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Steady viscous flow past a sphere at high Reynolds 
numbers 

By BENGT FORNBERG 
Exxon Research and Engineering Company, Annandale, NJ  08801, USA 

(Received 5 June 1987) 

Numerical solutions are presented for steady incompressible flow past a sphere. At 
high Reynolds numbers (results are presented up to R = 5000), the wake is found to 
resemble a Hill’s spherical vortex. 

1. Introduction 
Viscous flow past a circular cylinder becomes unstable around Reynolds number 

h? = 40 and past a sphere around R = 130. We are interested in the structure of the 
steady (but unstable) solutions above these Reynolds numbers. Apart from studies 
by the present author, the upper limit for (reasonably accurate) solutions for the 
cylinder in the literature appears to be R = 120 (Ta 1975), and for the sphere R = 
400 (Le Clair, Hamielec & Pruppacher 1970; Woo 1971). 

An earlier study by the present author (Fornberg 1985, hereinafter denoted F85) 
describes a calculation for the cylinder up to R = 600. This report describes a similar 
calculation for the sphere, carried out up to R = 5000. I n  both cases, i t  is the 
application of Newton’s method to solve the discretized equations that enabled us to 
obtain converged solutions well past the ‘barrier ’ where instabilities otherwise would 
start to occur. Conventional iterative techniques tend, in the artificial time 
introduced by the iterations, to pick up instabilities reminiscent of temporal ones. 
The quadratic convergence of Newton’s method precludes this from happening. With 
the present evolution of supercomputers, the computational cost of this approach is 
no longer prohibitive. 

In  the case of a cylinder, the wake bubble (the region with recirculating flow) was 
found to increase linearly with R in both length and width above R x 300. In  the 
sphere case, both growth rates are much lower, possibly like log R. I n  both cases, it 
appears likely that very high-Reynolds-number wake bubbles will be large, wide and 
similar in structure to Euler solutions which can translate through the fluid without 
any bodies present. 

Portions of this work have appeared in preliminary form as part of a conference 
contribution (Fornberg 1987). 

2. Mathematical formulation 

steady-state Navier-Stokes equations in cylindrical coordinates take the form 
With a sphere of radius one and the Reynolds number based on the diameter, the 
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FIGURE 1 .  Computational domain in (a )  the physical X-plane and ( b )  its image in the 2-plane. 
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Here, Y denotes a stream function and w vorticity. The x-axis is the downwind 
symmetry axis and y the distance from this axis. 

Near the sphere, all the vorticity is concentrated within a region similar to  the one 
sketched in figure 1 (a) .  The conformal mapping 

a x 2  ay2 yay yz 2y { ay ax ax ay y ax 1 .  

z = x t+x t  (3) 

maps such regions in the physical ( X  = x+iy)-plane to rectangles in the (2 = 
[+ iy)-plane (figure 1 b) .  After an arbitrary conformal mapping, the governing 
equations ( l ) ,  (2) take the form 

(4) 

where J ( [ ,  q )  = [t + 7;. These equations are further modified 
variables in the [- and q-directions: 

For 0 < 6 6 2 (corresponding to the sphere surface if 7 
satisfying 

8 0 )  = 0, t ( 2 )  = 2, 

Y(0) = 0, Y(2) = 0. 
r ( 0 )  = 0.7,  C(2) = 0.1, 

by separate changes of 

= 0) ,  [(c) is a quintic 

For ( 2, [(c) is a cubic satisfying the same conditions a t  5 = 2 and an additional 
one a t  the outer edge of the computed domain: 

I [(2) = 2 ,  [(6) = 10.8, 
g(2) = 0.1, 
f"(2)  = 0. 

For q 2 0, T ( K )  is a cubic satisfying 

r (0)  = 0, r(-) - - 0.6,\ 

1 q'(0) = 0.1, 
r"(0) = 0. 

(7) 
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FIGURE 2. Part of the computational domain near the sphere of a rectangular grid in the 
Z-plane. 

By varying the (non-zero) constants in these transformations, the relative grid 
densities in different parts of the flow field can be adjusted, for example to provide 
sufficient boundary-layer resolution and to ‘offset’ the grid singularity a t  the rear 
stagnation point on the sphere surface. In  all cases presented in this work, the 
particular constants given above were used. 

The domain size was also the same in all cases (except when changed to test for 
errors from boundary conditions as explained in a later section). In  (c, K)-space, the 
computational domain was [0, 6]x [0, $1, corresponding in (t, 7)-space to [0, 
10.81 x [0, 0.61. Three levels of resolution were used. The equidistant mesh spacings 
were (A5 = $, AK = &); (A< = &, AK = &); and (A< = &, AK = &) respectively. 
Denoted G1, G2 and G3, these grids were of sizes 217 x 73, 325 x 109 and 487 x 163 
points respectively. The sequence of grids correspond to successive refinement with 
a factor o f f  in each direction. 

Figure 2 shows the size of the computational domain in physical space near the 
sphere and the effect of the transformations on the grid density. However, for best 
visibility, the grid displayed has only a the density of G1 in each direction (i.e. it  
corresponds to a 55 x 19 grid which would be obtained by using (AC = g, AK = 3) 27 . 

3. Numerical approximation of the governing equations 
The governing equations are approximated by centred second-order finite 

differences at all interior points. At each boundary, two conditions are supplied. At 
the body surface they are Y = 0 and aY/aq = 0, and along the axis of symmetry 
Y = 0 and w = 0. At the outflow boundary, simple extrapolations proved satisfactory 
(as described in F85). 

The vorticity decays exponentially to zero for increasing values of q. The ‘top’ 
boundary is located sufficiently far out that the vorticity on or above it can be 
ignored. Figure 2 shows the location used at  all Reynolds numbers in this study. On 
this boundary, w is set to zero. The crucial issue is which second condition to apply. 
At least in two dimensions, use of ‘free-stream’ or leading terms in far-field 
asymptotic expansions proves unsatisfactory even when applied a t  large distances. 
This becomes even more the case if the boundary is not uniformly far out but comes 
close to the sphere, as with the present grid. The following approach applies equally 
well to two dimensions as to three. It is also very easy to implement, even where 
(possibly non-conformal) mappings have given the top boundary an arbitrary 
shape. 

Figure 3 illustrates the computational domain with the top two grid lines marked. 
If we imagine marching equation (4) (with w = 0) upwards from these two lines, the 
initial conditions for Y on them should be such that we do not pick up any 
exponentially growing modes. That is the case only if the values on these two lines 
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FIGURE 3. Implementation of the boundary condition for Yon  the top boundary: ( , ) grid-point 
indexing ; , grid-point locations on the outermost two grid lines ; 0, intersections of vortex rings 
with the ( 5 ,  y) plane. 

obey a certain set of M linear constraints. With the notation in figure 3, i t  should be 
possible to write such constraints as 

It remains to determine the matrix A .  Any solution to (4), with w = 0 and decaying 
for increasing 7,  can be inspected along the top two grid lines to yield a pair of vectors 
satisfying (9). M such independent pairs, placed side by side, forms matrices B 
and C satisfying B = AC. This relation can then be solved for A .  One possibility 
(which gives a well-conditioned matrix C) is to  consider circular line vortices. The Y- 
fields around such vortex rings arc known explicitly, e.g. Batchelor (1967). Placing a 
sequence of vortex rings as indicated in figure 3 provides all the data needed to solve 
for A. In two dimensions, pairs of point vortices can be similarly used. This matrix 
A constitutes the bottom-right square block in the matrix in figure 4 ( b )  (described 
below). 

It should be noted that the matrix A is ‘universal’ in the sense that it does not 
depend on the flow field within the computational domain (or on the Reynolds 
number). This is not a consequence of any asymptotic assumptions, which get 
increasingly accurate the further out one moves into an irrotational domain. It relies 
only on the fact that (1) and (4) become linear when w = 0. Full accwracy is achieved 
even when the flow is rotational in the immediate vicinity inside (but not outside) the 
boundary. 

4. Solution of the algebraic system 
The discretized equations are nonlinear. A convenient way to order the equations 

and unknowns is described in F85. It gives a Jacobian matrix with the structure 
shown in figure 4 ( a ) .  This coefficient matrix is first reduced to roughly half its size 
by eliminating all entries below the single diagonal (located in the top-right corner 
block). The new structure is shown in figure 4 ( b ) .  The sizes of the blocks are given 
both for a general M x IL’ grid and for the 487 x 163 grid. Standard row pivoted 
Gaussian elimination was employed for the main banded part. The remaining border 
elements were then eliminated. Table 1 summarizes the computational resources 
needed for each Newton iteration. 

The (grossly erroneous) Y = 0 as initial condition sufficed to get convergence at 
R = 100. Subsequent increments of 100 (of 50 very close to the upper limit of R = 
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FIGURE 4. ( a )  Structure of the linear system in Newton’s method. ( b )  Structure of the reduced 
Jacobian. 
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Grid Computational resources required and performance 

CPI? time, seconds 

Memory 
Generation used by 

Number of of each Sustained linear 
arithmebic linear Linear Mflop solver, 

Kame Size operations system solver rate Mhyt,es 

Cil 217x73  4.1 x 109 0.010 46 90 61 
G2 325x 109 2.1 x 10'O 0.022 191 110 209 
G3 487x 163 1 . 1  x 10'l 0.054 828 130 708 

TABLE 1 .  Computational resources required for each Newton iteration. Speeds given for 2-pipe 
CDC Cyher 205 using 64-bit precision. 

5000) with just one itcration at each value of R were sufficient for continuation. 
C'onvorgenw to full machine accuracy at any fixed Reynolds number required an 
additional 3 to 4 iterations. 

5. Equations for the pressure and the drag 
In cyligdrical (x. y)-coordinatcs, the pressure satisfies 

(10) 

(11) 
1 1 9 

i 

py =-w*+-(Yy Yzx- u; Y*,)f,!q. 
K $2 Y 

Changing notation to let s denote complex positions in the (2, y)-plane, an arbitrmy 
conformal mapping z = z(x), z = [+ iq ,  transforms (lo), (11) into 

ftJc-(lmf(x))-- 

1 
+y 3 {I  !m)l* (q ",,, - K/ !q,J - (Re h ( 4 ) .  (q + q,> 

--{(Ref@)) Y3 vl, y7+ ( Imf(4)  ql, (1%) 
1 

wherc 
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With the mapping (3), f(x) = $d-x-$) etc. 
It is conventional to define a 'non-dimensional' pressure P as 

where p is defined as in (10) and ( l l ) ,  p ,  is the pressure a t  infinity (set to 0 ) ,  p the 
density and U ,  the fluid velocity a t  infinity (both set to 1). After assigning the 
pressure to be zero a t  the top-right corner of the computational domain, (13) was 
used to find P (=  2p) along the right (outflow) boundary. Integrating (12) (for 
decreasing 5) then provided the results across the complete computational 
domain. 

The drag coefficient C ,  is the sum of two components, one arising from the viscous 
forces and the other from the pressure distribution over the sphere. These components 
take a particularly simple form in polar ( r ,  @coordinates: 

and 

Gv = - - sin2 B dB 1.l 

I n  (6 ,  7 )-coordinates, these equations become 

and 

6. Tests of accuracy 
Main sources of errors include : (i) machine rounding errors ; (ii) truncation errors 

arising from finite differencing of derivatives ; and (iii) boundary conditions 
simulating infinite domains implemented at a finite distance. 

The first error source proved negligible with use of 64-bit floating point precision. 
After the Newton iterations had converged, future iterations displayed random 
fluctuations in Y and w ,  typically only about lo-''. 

Regarding the second source, table 2 shows how the dimensions of the recirculation 
region (length measured from the centre of the sphere, width across the full wake) 
and the drag coefficient vary between the different grids for different Reynolds 
numbera. (Computations on grid G1 could be continued only to R = 2300 and on G2 
to R = 3725 owing to the emergence of spurious singularities.) The results are 
generally consistent with what one should expect from a second order scheme under 
successive mesh refinements with factors of I .  The error level should approximately 
halve at  each refinement. The error levels appear to be well below 1 %. 

The errors arising from the outer boundary conditions were tested by increasing 
the extent of grid G1 from 217x73 to 225x81 and 233x89 points. The three 
domains are denoted D1, D2 and D3 respectively; all discretization levels, grid 
transformations etc. were left unchanged. Figure 5 compares these extended domains 
(D2 and D3) to the basic one (Dl)  (The grid shown in Dl is the same 55 x 19 grid as 

I0 1 
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R 
100 
200 
500 

1000 
2000 
5000 

TABLE 2. 

Wake length Wake width Drag coefficient 

G1 c 2  G3 G1 G 2  G3 Gl G2 G3 

2.747 
3.871 - 2.264 - 0.768 - 
5.062 5.065 - 2.590 2.601 .- 0.481 0.482 - 

5.489 5.497 5.502 3.285 3.303 3.312 0.319 0.319 0.319 
6.038 5.987 5.983 4.220 4.192 4.196 0.196 0.200 0.200 
__ 6.797 - 5.462 0.1 13 

Wake dimensions (length measured from centre of sphere, width across t h e  full wake) as 

____ _ _ _ _ _ _ ~ ~ _ .  

1.818 - - 1.085 - __ - - 

- - - 

- - - - 

functions of computational grid density 

ID3 ___--- 
_/--- 

7 D2 ___/- - - - ____----- __-- _-- 
I 1 

J 
1 5 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

FIGURE 5 Comparison between the computational domains D1, D2 and D3 

Wake length Wake width Drag coefficient 

R 

100 
200 
500 

1000 
2000 
5000 

D1 D2 D3 

2.747 2.744 2.744 
3.871 3.868 3.867 
5.062 5.060 5.058 
5.489 5.484 5.481 
6.038 6.027 6.016 
- - - 

D1 D2 D3 

1.818 1.816 1.816 
2.264 2.262 2.262 
2.590 2.587 2.586 
3.285 3.279 3.276 
4.220 4.206 4.195 

D1 D2 D3 

1.085 1.085 1.084 
0.768 0.768 0.768 
0.481 0.482 0.482 
0.319 0.320 0.320 
0.196 0.197 0.198 
- - - 

TABLE 3. Wake dimensions (length measured from centre of sphere, width across the full wake) as 
functions of the position of the outer boundaries. All results are based on the grids with the same 
density as G l  (i.e. A< = &, AK = &). 

shown in figure 2.) The results in table 3 indicate that the basic domain is of sufficient 
extent for errors again to be less than about 1 YO. 

7. Results 
Figure 6 shows the streamlines and figure 7 contours of equal vorticity a t  Reynolds 

numbers 100, 200, 500, 1000, 2000 and 5000. Details of the vorticity fields near the 
sphere are shown in figure 8 for Reynolds numbers 100, 500 and 5000. For Y, the 
contour values are 

0,0.2 
1.0, 4.0, 9.0, 16.0 . . . 
-0.2, -0.4, -0.6, -0.8, -1.0, . . ., 

(20) 

and for o 

k(0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10, 20, 30, 50). 
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FIGURE 6. Streamlines. 
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FIGURE 7 .  Contours of constant vorticity. 
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R =  100 /-- 

- 

____ 

FIGURE 8 Contours of constant vorticity near the sphere 

To provide a better impression of the structure, of the wake, figure 9 displays the 
vorticity fields as surface projections. The figures are based on grid G1 for R = 100, 
200, on G2 for R = 500 and on G3 for R = 1000, 2000 and 5000. 

At the higher Reynolds numbers, the vorticity distribution in the wake bubble 
resembles that of a Hill’s spherical vortex (e.g. Batchclor 1967). Such vortices have 
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FIGURE 9(a-c). For caption see facing page. 
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FIGURE 9. Distribution of vorticity in the wake a t  different Reynolds numbers. 
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FIGURE 10. Values of w / y  in the wake behind the sphere at different Reynolds numbers. 
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FIGURE 11. Levels of w / y  within the recirculation region for different Reynolds numbers 
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FlCr iRE 12. T,ength and width of the recirr-ulation region for different Reynolds numbers comparrtl 
t o  the diameters of Hill’s spherical vortices with the same obsrrved valups for . J / Y .  

w / y  = const. inside a spherical flow domain, o = 0 outside it. This resemblance can 
be seen still more clearly in figure 10 which displays o / y  instead of w alone. 

If a Hill’s spherical vortex is travelling with unit speed, its diameter d satisfies the 
relation 

d = {3O/lw/yl}i. (22 ) 

The constant levels of w / y  observed within the wake bubbles are shown in figure 11.  
Corresponding values for d are shown in figure 12 together with the wake length and 
width (measured from the centre of the body and across the full wake respectively). 
If the limit is indeed of the spherical vortex form and grows to infinite size, all the 
three curves in figure 12 should ultimately approach each other. 

Spurious mesh oscillations were notiveablc for thcx vorticity near the lcadiiig 
edge of the wake bubble in the R = 5000 casc. For increased clarity in figure ’ i ( f ) ,  
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FIGURE 13. Pressure fields. 
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FIGURE 14. Pressure a t  the surface of the sphere. 
- 1  

- 1 j -  v 
FIGURE 15. Pressure along the centre of the wake. 

-3 
0 

R c v  C P  CLJ 
100 0.5087 0.5765 1.0852 
200 0.4093 0.3590 0.7683 
500 0.3034 0.1784 0.4818 

1000 0.2234 0.0952 0.3187 
2000 0.1531 0.0473 0.2005 
5000 0.0949 0.0183 0.1131 

TABLE 4. Drag coefficients C,, C, and C, calculated on the basic domain with the highest- 
resolution grid used a t  each Reynolds number 

8 ( c ) ,  9( f )  and l O ( f ) ,  the vorticity data (on G3) were damped by three times 
applying the smoothing operator with stencil 

[i f y l 6 .  
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FIGURE 16. Experimental values for C, compared t o  Stokes law and to the present results for 
steady flow. 

The pressure outside the sphere, over its surface and along the centreline of the 
wake are shown in figures 13, 14 and 15 respectively. The contour lines in figure 13 
differ by AP = 0.1 ; the dotted lines correspond to P = 0. 

The values obtained for C,, C, and C, (=C, +C,) for various Reynolds numbers 
are given in table 4 (based on the finest grid used a t  that Reynolds number). In  
figure 16, the values for C, are compared to a summary of experimental (unsteady) 
results compiled by Clift, Grace & Weber (1978; as reported in their figure 5.2). 

8. Conclusions 
Calculations leading up to those presented in F85 for the two-dimensional case of 

flow past a cylinder have led to a reassessment of models for wake structures. New 
models, based on the wide wakes which wcre observed, have been considered by 
Peregrine (1985) and Smith (1985, 1986, 1987). For the three-dimensional case of flow 
past a sphere, fewer attempts at modelling have been made in the past. Our present 
calculation suggests that the wake will take the form of a perturbed Hill’s spherical 
vortex. A finite-sized wake of this kind was proposed by Batchelor (1956). 

Unless advances are made in the area of active flow control, no immediate 
practical applications are anticipated for thc (very low drag) flows we have observed. 
Somehow maintaining axial symmetry is unlikely to sufficc since Hill’s spherical 
vortices for Euler flow arc unstable even in that case (Pozrikidis 1986). 
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